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i. Statement of the Problem. The amplitude method of determining the critical Reynolds 
numbers of the transition of a laminar boundary layer into a turbulent one in the case of 
sufficiently low amplitudes of initial perturbations reduces, as is well known [i, 2], to 
the study of perturbation development in the linearized theory of hydrodynamic stability 
until the region on the aircraft surface, where the threshold value is reached for the per- 
turbation amplitude e* = (~Re~) -2/3 (~ is the wave number for perturbations in gauges of the 
boundary layer width, and Re 6 is the Reynolds number, calculated from the width and local 
parameters of the boundary layer). 

In a number of cases it can be assumed that Re* =u~L*/~ (L* is the coordinate along the 
flow direction, corresponding to the location where the perturbation amplitude reaches the 
value e*) is approximately equal to the corresponding critical Reynolds number of transition 
to turbulence. Thus, the approximate calculation of critical Reynolds numbers reduces then 
to the study of excitations and development of instability in the linearized case. 

Quite important is here the problem of excitation of instabilities always occurring in 
the flow of background perturbation (initial turbulence in the leading flow, surface rough- 
ness of an aircraft, its vibration, various kinds of its chemical inbomogeneities, etc.). 
The problem of instability excitation has attracted increasing attention in recent years, as 
is well known (see, for example, [2-8]). 

Certain aspects of this problem are considered in the present study. 

~le assumption of a narrow layer in which instabilities develop is basic for the follow- 
ing treatment. We choose a curvilinear coordinate system xyz (Fig. i), such that the bound- 
ary layer is located near the surface S, corresponding to y = 0. If the stream flow problem 
is considered, the surface S is the stream surface. 

We denote the width of the boundary layer by 6, and let the characteristic sizes along 
the x and z axes be identical and equal to L. The assumption about the narro~cness of the 
layer is written in the form 

u = 8 / L < < t .  

We define the vector Q as the matrix column Qj(l~<j~k), consisting of the velocity pro- 
jections onto the directions of the x, y, z axes, as well as of temperature, pressure, den- 
sitY , concentration components of the medium, the components of the electric and magnetic 
fields, and their first derivatives with respect to x, y, and z. 

We introduce a perturbation for the quantity O: 

Q = Qo-l-sA. 

The quantity Qo describes the stationary flow field of the medium in the boundary layer adja- 
cent to the surface S, and is the exact solution of the original hydrodynamic equations. 

The quantity E will be assumed to be rather small (c<<l), so that to determine the quan- 
tity A one can use the linearized equations of motion of the medium. 

~le equation for the perturbation A can be represented in the operator form 

~, ~A j_ ~ ~A u ~ ~A = H~A + H[A. (i.i) 

The o p e r a t o r s  H a r e  r e p r e s e n t e d  by a m a t r i x  w i t h  e l e m e n t s  8n~ ( l ~ m ,  n ~ k ) ,  and ~ t  - -  by a 
c o n s t a n t  o p e r a t o r  0 o r  1.  The o p e r a t o r s  Hx, Hz a r e  m u l t i p l i c a t i o n  o p e r a t o r s ;  t h e y  c o n t a i n  
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the original flow characteristics, except the velocity component along the y axis, V. The 
operator fl" contains the original flow characteristics except V, their derivatives with 
respect to y, and the operation 3/~y. The multiplication operator H' contains derivatives 
of the original flow characteristics with respect to x, y, z, except the velocity V and its 
derivatives. 

Equations (i.I) are a homogeneous system of k linear differential equations in :First 
order partial derivatives of the k functions Aj (t, x, y, z) with varying coefficients, being 
known functions of x, y, z. 

We dwell on the boundary conditions to be used in solving Eqs. (i.I). We will consider 
one of the following three types of boundary conditions: 

i) The principal part of the quantity Aj vanishes for y =0, while quantities Aj also 
tend to zero for y § We assume that this problem coincides with the frequently investigat- 
ed problem of searching eigenfunctions and eigenvalues of the system (i.i). 

2) The principal part of the quantity Aj vanishes for y =0, while the quantities Aj 
remain bounded for y +~. These solutions, along with the solutions with conditions i, con- 
tain incoming waves, related to the existence of perturbations in the leading flow. 

3) The quantities Aj tend to zero for y § while Aj remain bounded at y =0. This prob- 
lem, along with the solutions with conditions I), contain waves arriving at the boundary 
layer, generated by the presence of roughness, suction, vibrations, or any other perturba- 
tions proceeding from the surface flow. 

2. General Method of Investigation (eikonal method). Let the unknown vector A be 
represented in the form of a Fourier integral 

A -= .i" A~, (x, y, z, o )e~ td t .  (2.1) 
(~) 

We seek a solution for A~ in the form 

Ao) = O(x,  y, z, o)or(x,z), ( 2 . 2 )  

where the eikonal F(x, z) is 

~(x, z) = - ~ J  ~(~, ~) dz. (2.3) 

The integration in (2.3) is carried out along some curve ~ in the x-z plane, while the upper 
limit of the xz integration is shifted by this curve, so that the eikonal F is a function of 
this upper limit. The integrand of expression (2.3) may generally not be a total differen- 
tial.* Substituting expressions (2.1), (2.2) into system (i.i), we obtain a system of equa- 
tions for determining the vector ~: 

-iHx~@ -- iHz?O = fioO i H~@, (2.4) 

w h e r e  Ho H'o-- ir176 H1 H1-- [Ix J ~I 0 

*The quantity adx +ydz is a total differential, for example, in the cases of two-dimensional 

flow in a boundary layer (when y =const, and a =a(x)) or flow in a boundary layer of a slip- 
ping airfoil~ 
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We make the following assumptions concerning orders of magnitude of the functions and 
the derivatives, appearing in (2,2), (2.3), corresponding to the basic assumption of a nar- 
row layer. The characteristic length scales of the function r are the following: Along 
the x and z axes the scale is L, and along the y axis it is 8, so that we have the following 
derivative ratio: 

0% ] e,% 0% 0% 
o~ /-W-,J "~ x, o, " - ~ r "  (2.5)  

L e t  t h e  q u a n t i t i e s  ~ and y be  o f  t h e  o r d e r  o f  1 / X ,  and t h e i r  d e r i v a t i v e s  

&zlOx ~.. 0o:18z ~ O?IOx ~, O?lOz ... tlL~,, (2.6) 

where  ~ i s  o f  t h e  o r d e r  o f  t he  wave l e n g t h  o f  t he  p e r t u r b a t i o n  c o n s i d e r e d .  

A s s u m p t i o n s  ( 2 . 5 ) ,  ( 2 . 6 )  c o r r e s p o n d  t o  s l ow  changes  o f  t h e  f u n c t i o n s  Cj ,  a ,  y a l o n g  t h e  
x and z a x e s  and a f a s t  change  o f  t h e  f u n c t i o n s  Cj a l o n g  t h e  y a x i s .  

I n  what  f o l l o w s  t h e  b a s i c  s m a l l n e s s  p a r a m e t e r  i s  t h e  q u a n t i t y  

h = L/L << I ( L = c ~ 8 )  

(c~ i s  a q u a n t i t y  o f  t h e  o r d e r  o f  m a g n i t u d e  b e t w e e n  u n i t y  and t e n ) .  

I f  now t h e  s y s t e m  o f  e q u a t i o n s ^ ( 2 . 4 )  i s  r e d u c e d  to  d i m e n s i o n l e s s  fo rm,  f o r  t h e  p o r t i o n  
o f  t e r m s  r e f e r r i n g  t o  t h e  o p e r a t o r  H1 t h e r e  a p p e a r s  a s m a l l  p a r a m e t e r  h ,  i . e . ,  i n  d i m e n s i o n -  
l e s s  fo rm the  e q u a t i o n s  a c q u i r e  t he  fo rm 

L O  = h~IlO (L==. --iHxcz - -  iHzy - -  ~o). ( 2 .7 )  

The s o l u t i o n  o f  s y s t e m  ( 2 . 7 )  i s  r e p r e s e n t e d  i n  t h e  fo rm o f  a power  s e r i e s  i n  t h e  s m a l l  p a r am-  
e t e r  

' h ~ ( O  h-'~(2) , | = O(0) -r § ~- ... ( 2 . 8 )  

S u b s t i t u t i n g  t h e  s e r i e s  ( 2 . 8 )  i n t o  ( 2 . 7 ) ,  we o b t a i n  a f t e r  e q u a t i n g  t e r m s  o f  t he  o r d e r  o f  
s m a l l n e s s  t h e  f o l l o w i n g  r e c u r r e n t  s y s t e m  o f  e q u a t i o n s  

ZO(~ = O, LO(l) ---- H10  (~ .... ( 2 . 9 )  

The system of equations (2.9) is a system of first-order ordinary differential equations 
in y, with the arguments x,z appearing in them as parameters. 

The expansion (2.8) is an internal expansion for the problem under investigation. 

The problem of solving system (2.9) for the zeroth approximation with the corresponding 
boundary conditions will be called the locally homogeneous problem. We assume that the 
locally homogeneous problem has been solved. This implies that we found a system of eigen- 
vectors ~(x, y, z), for which the complex quantity ~(x, z) has both a continuous and a dis- 
crete eigenvalue spectrum. The quantity a classifies the possible types of perturbation. ~ 
Let the dispersion relation be 

= ~(x, z, a~, ~, ?), (2.10) 

where a i is the set of physical parameters of the problem (the Reynolds and Mach numbers, 
etc.). Similarly tothe quantity y, the quantity m is assumed given, therefore the equation 
for the zeroth approximation is directly written in the form 

- ~ f i ~  =Doo~  (/~oo=17o + i ~ ) .  (2.11) 

We definethe product of two vectors 

oo 

(A, B) ---- lim S l (e ,  y ) E  A,~B,fly. 
~ 0  o (n) 

(2.12) 

The function f(s, y) is chosen to be unity for problem i, exp(--r 
exp(--~/y) for problem 3. 

We define the operator H* as associate to the operator H if 

(~X, B) = (A, ~ *n). 

for problem 2, and 

(2.13) 
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We define the system of vectors ~ is the solution of the associated problem, i.e,, satisfy- 
ing the equations 

= Hoo~F~ (2.14) --~H~F~ -* 

and the corresponding boundary conditions,^obtained by the standard procedure simultaneously 
with the shape of the associated operator H* according to definition (2.13): The expression 
on the left-hand side of (2.13) is integrated in parts, so that only terms with integrals 
remain. 

Multiplying (2.11) by ~, and taking into account (2.14), we have 

(~ -- ~)(Hx~, ~Fi~) == O. (2 . !5)  

From expression (2.15) follows the orthogonality condition of the vectors ~ and ~B for a #B: 

( H x ~ ,  W~) = 0. ( 2 . 1 6 )  

We assume that the vector ~a is normalized, i.e., 

(dab is the Kronecker symbol) for the discrete spectrum, and 

( 6 ( x )  i s  the ~ - f u n o t i o n )  f o r  the c o n t i n u o u s  spectrum. 

We turn now to costructing the external expansion for the problem under investigation. 
We represent the solution for A~ in the form 

Ao = E ~i (X, g) ~ue  F~, (2 .!9) 
(n) 

where the quantity n counts all eigenvectors of the problem investigated. Substituting 
(2.19) into (2.1), (i.i), we obtain the expression 

. e , (2.20) ~-..'jT"x x x~Pn ~ -~i-i,,,i Oz 
(.) (~) (~) 

Let now (for simplicity) the spectrum of eigenvectors considered be discrete. ~itiplying 
(2.20) by the quantity ~m (one of the corresponding vectors of the associated problem), and 
taking into account the orthogonality condition (2.17), we obtain the following system of 
equations in partial derivatives for determining the quantities cn(x, z) in the main approxi- 
mation: 

dell , Fit--F m FIz--Fm 

'"~ (2.21i (.) (.) 

where Vmn = (Hzln, ~m); Wmn = (Hi'n, Ym)- The number of equations in system (2.21) coincides 
with the number of functions cn(x, z). Relationship (2.21) can be treated as the solvability 
condition of system (2.9) for the following approximation, if a solution is sought in the 
form (2.19). The matrices Vmn and Wmn are logically called transition matrices. The 
diagonal terms (m =n) of the matrix Wmn describe the perturbation enhancement in the boundary 
layer due to the inhomogeneity in x and z. The nondiagonal terms (m #n) describe the excita- 
tion process of mode m by mode n, i.e., they are generation sources of mode m. The existence 
of a nonvanishing matrix Wmn is exclusively related with the inhomogeneity of the original 
boundary layer along the x and z axes. The nondiagonal terms of the matrix Vmn also describe 
the generation process of mode m due to inhomogeneity of mode n in z. 
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When there exists a single-mode regime, i.e., cz =c, c2 =c3 =... =0, system (2.21) 
reduces to one first-order partial differential equation: 

Oc/#x + VzlOc/O~ = Wzlc. (2 .22)  

E q u a t i o n  (2 .22 )  c o i n c i d e s  w i t h  t h e  e q u a t i o n  o b t a i n e d  in  [ 9 ] .  I t  must  be n o t e d  t h a t  a s i n g l e -  
mode reg ime  does  n o t  a lways  e x i s t ,  and i s  u s u a l l y  an e x c e p t i o n .  S i m i l a r l y  d e t e r m i n e d  a r e  
a l s o  t he  f c l l o w i n g  a p p r o x i m a t i o n s  i n  h f o r  t he  s o l u t i o n  s o u g h t .  

The e i k o n a l  method p r e s e n t e d  i s  a t y p i c a l  p e r t u r b a t i o n  method.  F o r m a l l y  i t  r e s e m b l e s  
the  t h e o r y  o f  quantum t r a n s i t i o n s  f o r  t i m e - d e p e n d e n t  p e r t u r b a t i o n s  ( s e e ,  f o r  example ,  [ 1 0 ] ) .  
An i m p o r t a n t  d i f f e r e n c e  i s  t h a t  t he  e i k o n a l  has  a r e a l  p a r t ,  and f o r  p rob lems  of  i n s t a b i l i t y  
deve lopmen t  t he  e i k o n a l  as  an a n a l y t i c  f u n c t i o n  h a s ,  a t  l e a s t ,  one s a d d l e  p o i n t ,  so t h a t ,  as  
seen  be low,  i t  d e t e r m i n e s  the  b a s i c  c h a r a c t e r  o f  the  s o l u t i o n  i n v e s t i g a t e d .  

I f  t h e r e  e x i s t  s i m u l t a n e o u s l y  d i s c r e t e  and c o n t i n u o u s  s p e c t r a ,  i n s t e a d  o f  (2 .19)  one 
must w r i t e  

A~ E O,,e r" (~=er=d~. (2.23) 0. (x, .) + ~ c~ (~, z) 
(,i) r 

The generalization of Eq. (2.21) to the case (2.23) can be obtained without difficulty. 

3. Study of the Planar Case. Consider first the case in which the main flow in the 
boundary layer is two-dimensional and is independent of the coordinate z. The system of 
equations (2.21) is rewritten in the form 

= / _ ~ c .  m i, F k = - - ~  ah (x )d~  �9 (3.1) 
#x (n) Xl 

I n  t he  o n e - d i m e n s i o n a l  c a s e  c~ = c ,  c2 =c3 = . . .  =0 we have an e q u a t i o n  f o r  t he  change  i n  the  
wave a m p l i t u d e  

dc!d~ = cW(x), 

whence 

.[ w(.>., 
(F(x) 

A .  c@ =~ (P (=, ~) - 

A well-known solution was obtained (see, for example, [ii]) for wave propagation, in 
particular the Tollmien--Schlichting wave, with account of the non-parallel nature of the 
main flow, when the wave amplitude is known at the point x =xo. 

Consider now the two-dimensional regime: For two fixed m and n c n #0, c m #0, and the 
remaining modes are absent. The system (3.1) transforms to a system of two equations 

Oc~/Ox= c ~ W ~  + c , , W ~ o  ~, 

ac,,/Ox = e~W.~ + e ~ V ~ e  -a (A = F,, - -  F.,). (3 .2 )  

At the point x =Xo, let 

Cm -~- O, Cn ~ Cn O. 
(3.3)  
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The following formal solution of this system can be obtained for conditions (3.3): 

'J X 
XO f Xo Cm -~ e . c,W,r,,.e eadx,  

x~ (3.4) 

lVt~flx i IVnndx -- IVa~fl~ 

XO XO i' a:O 
C n ----- c%e -~l e ,~ c m W n m  e e-~dx. 

x 0 

System (3.4) is a system of integral equations for Cm(X) and cn(x), replacing the system of 
equations (3.2). Clearly, this is the simplest problem of exciting mode m by means of mode 
n. The most interesting problem here is that of exciting a Tollmien--Schlichting wave. 

The transition to the system of integral equations (3.4) is quite convenient, since the 
eikonal is a large quantity of the order of l/h, and to calculate in this case the integrals 
on the right-hand sides of (3.4) one can successfully apply the ideology of the steepest 
descent method (see, for example, [12]), assuming that all functions are analytic functions 
of the variable x. 

The case called resonance excitation is of substantial interest for what follows. Let 
the imaginary part of the quantity am have the shape of Fig. 2, i.e., at the points x >Xny 
the mode m becomes unstable: 

" (*  - *,,,~) + o I*  - ~,,~ I :, Im ((x,~) = --g- (3.5) 

and let the real parts of the quantities a m and an be constant and equal to each other. In 
this case the main term in the expansion of the eikonal A in a series in the complex quan- 
tity (x -- Xny ) is 

A = -- (a/h)(x  - -  x , , ) :  ~ OIx - -  x ~ !  3 

(a is a real positive number). 
equalities 

The eikonal F m and F n are determined here and later by the 

X~g Xny 

I t  i s  s e e n  f r o m  ( 3 . 5 )  t h a t  t h e  p o i n t  x =Xny i s  a s a d d l e  p o i n t  o f  t h e  e i k o n a l  h = u  + i v ,  
considered in the plane of the complex variable x =x r +ix i (Fig. 3): The line u =const 
emerges from the point Xny at an angle +7/4, the sectors through which the real axis passes 
are negative sectors. This situation also holds, obviously, when the real parts of the quan- 
tities a m and a n are such that 

= I, ( : c - ~ , , y ) + O I x -  x ~ l  Re (~z,~ -- %) ")7 

(b is a real quantity) if only ]b] <a. 

Tile main term in h of the integral for Cm is [12], if Xo <Xny and x >Xny, 

Wnmd x 

.f 2-~7 ~0 
cm =;F " 7 -  cn ( x ~ )  Wrn~ ( x,w) e ( 3 . 6 )  

C l e a r l y ,  i f  x <Xny,  t h e  q u a n t i t y  c m v a n i s h e s  i n  t h e  o r d e r  c o n s i d e r e d  ( h ~ / ~ ) .  

Thus, in the resonance case under consideration the wave n directly excites wave m with 
amplitude (3.6) at the point of stability loss of wave m. 

This treatment also applies to a To!imien--Schlichting wave if wave n has a phase veloc- 
ity in the direction of the x axis which is the same as the phase velocity of the Tollmien-- 
Schlichting wave. 

4. Excitation llechanism of a Tollmien--Schlichting Wave. The resonance excitation con- 
sidered above is unstable. And what is the situation when the phase velocities of waves m 
and n do not coincide? To what extent are instabilities excited in this case? 
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Let the eikonal have the same structure as in Fig. 4. The point x* has a saddle point 
of the eikonal A = u +iv. The points A and B are the intersection points of the lines u = 
const, starting from the saddle point, with the real axis; the locations of the negative and 
positive sectors are shown by the corresponding signs. 

It is easily verified that in the case 

a ~  = ~ i l h  + (Zalh)(x - -  x,~), ~ = a ,  dh.  

for example, a similar eikonal occurs. The quantities ami , ani, a are positive constants. 
Then 

- -  a (X - -  X,ty) ~ + ~ Z (X--  Z.y). A =  9D7 

We introduce the notations 

= x / x ~ ,  ~ =  ' - aXrty~ ~m~ : ~miXnY~ 

~n i  = ~niXng,  ~ = ~ml  - - ~ . i .  

The expression for h acquires the form 

A = - - ( ~ 2 h ) ~ -  t) 2 + ( i h ~ / h ) ~  - -  i). 

The s a d d l e  p o i n t  c o r r e s  t o  d A / d x :  = 0 ,  x* =1  + i A a / a .  The v a l u e  o f  t h e  e i k o n a l  h a t  t h e  
s a d d l e  p o i n t  i s  5* = 5 ( x * )  = - ( A a ) a / 2 h a .  The e x p a n s i o n  o f  t h e  e i k o n a l  A i n  p o w e r s  o f  (x - -  
x*) acquires the form 

A = A* - -  (~2h)(x - -  x*)a. 

The graphic representation of this example of eikonal, the eikonal portrait, is shown in Fig. 
5. The lines u =const passing through the saddle point, being straight, intersect the real 
axis at the points A and B. The hyperbolas shown correspond to the other lines u =const. 
The family of lines v =const is orthogonal to the family u =const, and also consists of 
hyperbolas, reflected by the dashed lines. 

We assume that all functions appearing in expression (3.4) for Cm and Cn are analytic 
and single-valued in the region between the real axis and the saddle point, since the inte- 
gration contour, whose beginning and end are located on the real axis, can be deformed, 
enclosing the saddle point. The following three substantially different cases of locations 
of the points xo and x can be imagined. 

i. The points Xo and x are found inside the segment AB of Fig. 4. In this case the 
integration contour can be deformed into the contour c, emerging from the point Xo and 
reaching the point x by the corresponding lines v =const, and then the values of the 
required integral will be the sum of integrals over small neighborhoods of the points Xo and 
x. The terms of this sum will be of the order of h. 

An asymptotic representation for the integral can be obtained in this case by successive 
integrations by parts. Indeed, 

x 

cnWm n -- ~ lYmm dzt 
where X (hA) = ~ e % 

dx 

Further 

:g 
~ WmmdX 

gm ~ ex~ I .  

tc -- ~ Wmr, td~: Bi.,. 
t ~  

(ha) 
x 0 A 1 

B 1 
x 

= t ~  {z  (hA) - -  hx' (ha) + h~x" - -  h~Z"} I~', + h" .[ x 'V~da  . . . . .  ~ r  (~)J~, 
A l 

B 1 

~ (hA) eAd~ 
A! 

where T(x) is a series in the small parameter h, starting with a term of order unity. 
finally obtain for c m 

We 
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,t" WmmdX 
c.~ = he% { T (x) c ~(x) - -  T (xo) eA(%)}. 

The full expression for the m-wave is 

.~ wr~.~a~: .I Wmmdx 

A(m = horn  (x,  y) T (x~) e~(:%)e % e vm(~;) ' hO.~ (x, g) r (x) r e rn(:~ -- -i:- (4 .i) 

Thus, an excitation of an m-wave consists of a pure m-wave (the first term in (4.1)) and a 
wave (the second term) having an amplitude distribution along y as the m-wave, but with an 
eikonal wave n (intermediate wave). 

The system of equations (3.4) for the two-mode case under consideration becomes practi- 
cally uncoupled, since a correction to the quantity Cn due to wave interaction will have a 
relative order of smallness h =, as the expression for the integral in the second Eq. (3.4) 
can be obtained by a procedure similar to that described above in obtaining expression (4.1), 
with the only difference that the eikonal is now replaced by --A, and the positive sector of 
Fig. 4 is replaced by the negative one, and vice versa. The integration contour xo -- x does 
not intersect the sector boundary here either. 

~qlerefore the quantity Cn in the function T(x) of expression (4.1) must be understood 
as the main term of the quantity Cno. 

2. We turn now to the case in which the point Xo is left of the point A, while the 
point x is inside the segment AB, i.e., the integration contour intersects the sector bound- 
ary. 

~le integration contour can be deformed into the sum a +b of Fig. 4. The contour a 
enters the saddle point along lines v =const from the side of the negative sector. The con- 
tour b emerges from the saddle point in the positive sector, and enters the point x on the 
real axis in the direction v =const. 

~le integral I over the contour a is determined by a small neighborhood (~h ~/2) of the 
saddle point, while the integral over the contour b is determined by a small neighborhood 
(MO of the point x 

I = !~  - -  I~. 

The main terms of the quantities I a and Ib are 

a-f~ o t' Wmm dx 
I Z ' - - 7  - - 1  " i * 

I~ -- "7- V a ' . ' o  "e '-' c~ (x*) W,..~ (x*) e;: e A 

( A" %e"%) A* = A (x*), - ~  x:~* : h ' 

x 

--.! ' ~T'nzrdL~ 
I b h cn (x) W.m (r) xo e A. 

d (hA)/dx e 

The expression for the excited wave is 

..~-r% .!' Wmm#x 
A(") I ] / ~ 7 0 ~  (., .~) ro~% ~ "~ c,~ (**) W~,~ (x*) e~*e% e r~(~) 

% (,) W,. .  (,) crn(.~). 
-',- h@m (x, g) a (hA)/d~ 

Thus, in case 2 the excited wave consists of a pure m-wave with an amplitude independent of 
the point xo, and the same intermediate wave as in case i. 

3. Let now the point xo be located left of point A, with point x right of point B. 
The integration contour can then be deformed into a +d, and, thus, the magnitude of the inte- 
gralwillbe deternined only by a small neighborhood (~h I/2) of the saddle point 

x ~ 

,~-~o ,!' Wmmdx 
I = ]/-n'h,'o 1 "e ~ "- c,, (x*)I4,'~,~ (x*)  0% e A*. 
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The expression for the excited wave acquires the following form of a pure m-wave: 

~-~o ~ Wmm d~ 

Oei" ~ * i* eFm(X). A i  m) V ' ~  (x,y) r; x:" cn (x*) Wren (x*) e a e 

Thus ,  when t h e  p o i n t  x p a s s e s  t h r o u g h  t h e  s e c t o r  b o u n d a r y  B t h e r e  a p p e a r s  a p u r e  m-wave w i t h  
t h e  same a m p l i t u d e  a s  t h e  m-wave i n  c a s e  2.  Wi th  f u r t h e r  d i s p l a c e m e n t  o f  t h e  p o i n t s  xo and 
x i n s i d e  t h e  n e g a t i v e  s e c t o r s  t h e  a m p l i t u d e  o f  t h e  p e r t u r b a t i o n  wave  w i l l  n o t  c h a n g e .  T h e r e -  
f o r e  i t  c a n  b e  s t a t e d  t h a t  t h e  p e r t u r b a t i o n  z o n e  o f  t h e  m-wave by  wave  n i s  t h e  s e g m e n t  AB 
of the real axis, included in the positive sector of the eikonal h(x). 

~le correction to the quantity Cno in the expression for cn due to interactions with 
the m-wave will be of order h 3/2 in case 3, while in case 2 it is of order h, i.e., the equa- 
tions for Cm and Cn are uncoupled within the main order, and in the expression for c m one 
can replace c n by Cno. 

~te mechanism investigated is a mechanism of interaction of waves, having different 
phase velocities and identical frequencies. 

It is significant that the dominant order (~h I/2) of the perturbation instability (m- 
wave) is acquired during intersection of the integration points of neighborhoods of the 
points A and B, the intersection points of the lines u =const, starting from the saddle 
point with the real axis. At the same time the excitation has mostly the nature of reso- 
nances, similarly to the observation in Section 3: An m-wave of half-amplitude is excited by 
transition through point A, and the second half by transition through point B. 

The effect noted can be called quasiresonance, taking into account that in this case, 
unlike that of true resonance in Sec. 3, the wave amplitude obtains the factor exp(A*), 
where ReA* <0. 

It is important that the mechanism uncovered of instability excitation appears on a 
finite segment AB of variation of the variable x, located near the point of stability loss 
of the m-wave. 

5. Propagation of a Spatial Wave Packet. Consider the single-mode regime of wave prop- 
agation in the three-dimensional boundary layer c, =c #0, c= =c3 =... =0. We investigate 
the development of a wave packet: 

EA~ = I t ( x ,  z, ?) @ (x, y, z, ?)eVd?. ( 5 . 1 )  

The e i k o n a l  F i s  a l a r g e  q u a n t i t y  ( ~ l / h ) ,  and i s  

F(x,  z) = -- i ~ a(x,  z, ?)dx-l- ydz. ( 5 . 2 )  

Since F is a large quantity (~i/h), the behavior of the wave group under consideration is 
determined as a whole by the eikonal shape F =Fr+iF i. We assume that all functions appear- 
ing in (5.1) are analytic functions of the parameter y. Assuming that the contour of inte- 
gration over y can be deformed, so that it passes through the saddle point y* of the eikonal 
by negative sectors, we reach the conclusion that the value of integral (5.1) is predominantly 
determined by the expression [12] 

EA~ = V~ev(a'*)c (a:, z, ?*) �9 (x, y, z, ?*) b~:~e ' ~ 
(5.3)* 

The saddle point is determined by the relation 

oFmr = o. (5.4) 

Since the contour ~ is fixed, condition (5.4) acquires the form 

*If Ibol =0, the main term of expression (5.3) will be (see [12]) of order h I/". 
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~ ~a d:r dz = O. ~T + (5.5) 

Ho~Tever, based on the fact that the point x, z is displaced along the curve ~, we conclude 
that 

a~:'c~? -= --dz/dx.  ( 5 . 6 )  

Expression (5.6) can be obtained from (5.5) on the basis of standard considerations, 
assuming that the integrand expression in (5.5) is nonvanishing, etc. 

According to [9], expression (5.6) also determines the characteristic equation for 
c(x, z). We note that from our point of view the condition [9] of reality of ~/~u is not 
necessary, l~reover, the fact of presence of an imaginary part of the quantity ~a/~y 
implies that the ordinarily solved Cauchy problem in the one-dimensional case has physical 
meaning, and it is necessary to solve the boundary value problem for the coefficient c(x, z)~ 
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